Abstract
ABSTRACT A Bayesian statistics-based approach is discussed that can be used for direct evaluation of the popular Cronbach’s coefficient alpha as an internal consistency index for multiple-component measuring instruments, as well as for testing its identity to scale reliability. The method represents an application of confirmatory factor analysis within the Bayesian inference framework and is widely applicable in empirical measurement research using popular latent variable modeling software. The procedure readily furnishes posterior median point estimates and credible intervals of coefficient alpha. The approach also permits testing a necessary and sufficient condition for population equality of the alpha and scale reliability coefficients, and under its plausibility provides in addition a dependable means for estimation of instrument reliability. The outlined procedure is illustrated using numerical data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Measurement: Interdisciplinary Research and Perspectives
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.