Abstract
Critical soil acidification loads (CL) and related exceedances, base cation leaching, N leaching, and forest biomass growth were evaluated for a well-studied deciduous forest site within the Turkey Lake Watershed (TLW). The assessment was done by way of steady-state mass balance considerations of primary inputs for N, Ca, Mg, and K. Critical soil acidification rates were found to be high at TLW. These rates amounted to about 900 or 1400 eq/(ha yr) depending on the forest harvesting regime (selective harvest or maintainence of old-growth condition, respectively). The TLW soil substrate (till derived from basaltic bedrock) appeared to weather well, thereby buffering against natural and anthropogenic soil acidification. As a consequence, soil acidification exceedances were estimated to be relatively low for both the selective harvest and old-growth scenarios. In comparing overall S and N input/output data (atmospheric deposition data vs soil leaching losses), we found that the TLW site was essentially near or at S and N saturation. We also found that atmospheric deposition and soil leaching rates have been declining since about 1980. The figures for CL and exceedance varied to some extent depending on the quality of input data and related uncertainties. Estimated exceedances were increased when dry- as well as wet-deposition rates were considered. They varied depending on the yearly sulfate/nitrate/base-cation mix, and the definition of “acceptable acid leaching.” In addition, they were dependent on whether the forest was considered old growth or not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.