Abstract

At present there lacks a unified approach in understanding the mechanistic role of weldments cracking in fracture mechanics specimens at elevated temperatures. The effects of residual stress, the development and crack tip damage due to it and the subsequent creep relaxation at high temperatures can be evaluated using relevant test data, numerical modelling and residual stress measurements. These problem areas are considered in this paper and discussed in context under the newly formed collaborative international effort in the Versailles Agreement of Materials and Standards committee, VAMAS TWA31. The plans for this collaborative effort are to evaluate tests at elevated temperatures in a number of high strength steels and also model and measure weldments containing residual stresses. The aim of the four year programme will be to make recommendations and establish pre-standardisation methods for testing, measuring and analysing creep crack initiation (CCI), creep crack growth (CCG), and low frequency creep fatigue crack growth (CFCG) (where creep dominates) characteristics in weldments containing residual stress. The fracture mechanics geometries that will be considered have already been validated in the previous TWA25 collaboration [VAMAS TWA25, Draft Code of Practice, ‘Creep/fatigue Crack Growth in Components’, VAMAS document. Nikbin K, editor. May 2005.] for testing of parent material. Examples of testing and analysis techniques are presented in this paper to highlight the future objectives for this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.