Abstract

The structural chemistry of six thiazole amides has been explored using experimental crystallographic data, and a combination of calculated hydrogen-bond propensities (HBPs) and hydrogen-bond energies. Both methods correctly identify the main hydrogen-bonded synthon, a pairwise N–H···N dimer, which appears in all the available structures. The strength and stability of the homosynthon in these compounds were tested by attempting to co-crystallize all six compounds with 20 different carboxylic acids. A total of 120 attempted reactions were carried out via liquid-assisted grinding experiments; sixty of these reactions produced a co-crystal, as indicated by IR spectroscopy. HBP calculations were employed in order to try to predict which of the 120 reactions would be successful. A multi-component score (MC score) was obtained from the hydrogen-bond propensity calculations, and this score coupled with a cut-off value >0.0 resulted in a 77% agreement between prediction and experiment (88% success for aliphatic a...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call