Abstract

Given the crucial role of land surface processes in global and regional climates, there is a pressing need to test and verify the performance of land surface models via comparisons to observations. In this study, the eddy covariance measurements from 20 FLUXNET sites spanning more than 100 site-years were utilized to evaluate the performance of the Common Land Model (CoLM) over different vegetation types in various climate zones. A decomposition method was employed to separate both the observed and simulated energy fluxes, i.e., the sensible heat flux, latent heat flux, net radiation, and ground heat flux, at three timescales ranging from stepwise (30 min) to monthly. A comparison between the simulations and observations indicated that CoLM produced satisfactory simulations of all four energy fluxes, although the different indexes did not exhibit consistent results among the different fluxes. A strong agreement between the simulations and observations was found for the seasonal cycles at the 20 sites, whereas CoLM underestimated the latent heat flux at the sites with distinct dry and wet seasons, which might be associated with its weakness in simulating soil water during the dry season. CoLM cannot explicitly simulate the midday depression of leaf gas exchange, which may explain why CoLM also has a maximum diurnal bias at noon in the summer. Of the eight selected vegetation types analyzed, CoLM performs best for evergreen broadleaf forests and worst for croplands and wetlands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call