Abstract

Abstract Tropopause polar vortices (TPVs) are coherent circulations that occur over polar regions and can be identified by a local minimum in potential temperature and local maximum in potential vorticity. Numerous studies have focused on TPVs in the Arctic region; however, no previous studies have focused on the Antarctic. Given the role of TPVs in the Northern Hemisphere with surface cyclones and other extreme weather, and the role that surface cyclones can play on moisture transport and sea ice breakup, it is important to understand whether similar associations exist in the Southern Hemisphere. Here, characteristics of TPVs in the Antarctic are evaluated for the first time under the hypothesis that their characteristics do not significantly differ from those of the Northern Hemisphere. To improve understanding of Antarctic TPV characteristics, this study examines TPVs of the Southern Hemisphere and compares them to their Northern Hemisphere counterparts from 1979 to 2018 using ERA-Interim data. Common characteristics of TPVs including frequency, locations, lifetimes, strength, and seasonality are evaluated. Results indicate that topography correlates to the geographic distribution of TPVs and the locations of local maxima TPV occurrence, as observed in the Northern Hemisphere. Additionally, TPVs in the Southern Hemisphere exhibit seasonal variations for amplitude, lifetime, and minimum potential temperature. Southern Hemisphere TPVs share many similar characteristics to those observed in the Northern Hemisphere, including longer summer lifetimes. The association of Southern Hemisphere TPVs and surface cyclone frequency is explored, and it appears that TPVs have a precursory role to surface cyclones, as seen in the Northern Hemisphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call