Abstract

AbstractThere are several ways of recording psychophysiology data from humans, for example Galvanic Skin Response (GSR), Electromyography (EMG), Electrocardiogram (ECG) and Electroencephalography (EEG). In this paper we focus on emotion detection using EEG. Various machine learning techniques can be used on the recorded EEG data to classify emotional states. K-Nearest Neighbor (KNN), Bayesian Network (BN), Artificial Neural Network (ANN) and Support Vector Machine (SVM) are some machine learning techniques that previously have been used to classify EEG data in various experiments. Five different machine learning techniques were evaluated in this paper, classifying EEG data associated with specific affective/emotional states. The emotions were elicited in the subjects using pictures from the International Affective Picture System (IAPS) database. The raw EEG data were processed to remove artifacts and a number of features were selected as input to the classifiers. The results showed that it is difficult to train a classifier to be accurate over large datasets (15 subjects) but KNN and SVM with the proposed features were reasonably accurate over smaller datasets (5 subjects) identifying the emotional states with an accuracy up to 77.78%.KeywordsSupport Vector MachineBayesian NetworkRegression TreeEmotion RecognitionMachine Learning TechniqueThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call