Abstract
The aim of this study was to evaluate the accuracy, comprehensiveness, and safety of a publicly available large language model (LLM)-ChatGPT in the sub-domain of glaucoma. Evaluation of diagnostic test or technology. We seek to evaluate the responses of an artificial intelligence chatbot ChatGPT (version GPT-3.5, OpenAI). We curated 24 clinically relevant questions in the domain of glaucoma. The questions spanned four categories: pertaining to diagnosis, treatment, surgeries, and ocular emergencies. Each question was posed to the LLM and the responses obtained were graded by an expert grader panel of three glaucoma specialists with combined experience of more than 30 years in the field. For responses which performed poorly, the LLM was further prompted to self-correct. The subsequent responses were then re-evaluated by the expert panel. Accuracy, comprehensiveness, and safety of the responses of a public domain LLM. There were a total of 24 questions and three expert graders with a total number of responses of n = 72. The scores were ranked from 1 to 4, where 4 represents the best score with a complete and accurate response. The mean score of the expert panel was 3.29 with a standard deviation of 0.484. Out of the 24 question-response pairs, seven (29.2%) of them had a mean inter-grader score of 3 or less. The mean score of the original seven question-response pairs was 2.96 which rose to 3.58 after an opportunity to self-correct (z-score - 3.27, p = 0.001, Mann-Whitney U). The seven out of 24 question-response pairs which performed poorly were given a chance to self-correct. After self-correction, the proportion of responses obtaining a full score increased from 22/72 (30.6%) to 12/21 (57.1%), (p = 0.026, χ2 test). LLMs show great promise in the realm of glaucoma with additional capabilities of self-correction. The application of LLMs in glaucoma is still in its infancy, and still requires further research and validation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.