Abstract

Bifactor measurement models are increasingly being applied to personality and psychopathology measures (Reise, 2012). In this work, authors generally have emphasized model fit, and their typical conclusion is that a bifactor model provides a superior fit relative to alternative subordinate models. Often unexplored, however, are important statistical indices that can substantially improve the psychometric analysis of a measure. We provide a review of the particularly valuable statistical indices one can derive from bifactor models. They include omega reliability coefficients, factor determinacy, construct reliability, explained common variance, and percentage of uncontaminated correlations. We describe how these indices can be calculated and used to inform: (a) the quality of unit-weighted total and subscale score composites, as well as factor score estimates, and (b) the specification and quality of a measurement model in structural equation modeling. (PsycINFO Database Record

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.