Abstract

As the automotive industry progresses towards the car of the future, we have seen increasing interest using augmented reality (AR) head-up displays (HUD) in driving. AR HUDs provide a fundamentally new driving experience in which drivers still have to respond to both the road and the information provided by the system, creating the perfect atmosphere for potentially unsafe and distracting interfaces. As we start fielding and designing for new AR HUDs displays, the complexities of interface design and its impacts on driver performance must be further understood before AR HUDs can be broadly and safely incorporated into vehicles. Nevertheless, existing methods for assessing the usefulness of computer-based user interfaces may not be sufficiently rich to measure the overall impact of AR HUD interfaces on human performance. Therefore, in my Ph.D. research, I focus on developing and testing methods to evaluate AR HUDs' effects on driver distraction and performance. My primary goal is to assess glance allocation and visual capabilities of drivers with AR HUDs and apply this knowledge to inform new methods of AR HUD assessment that account for inattentional blindness and cognitive tunneling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call