Abstract

Lexical-Functional Grammar (LFG: Kaplan and Bresnan, 1982; Bresnan, 2001; Dalrymple, 2001) f-structures represent abstract syntactic information approximating to basic predicate-argument-modifier (dependency) structure or simple logical form (van Genabith and Crouch, 1996; Cahill et al., 2003a) . A number of methods have been developed (van Genabith et al., 1999a,b, 2001; Frank, 2000; Sadler et al., 2000; Frank et al., 2003) for automatically annotating treebank resources with LFG f-structure information. Until recently, however, most of this work on automatic f-structure annotation has been applied only to limited data sets, so while it may have shown ‘proof of concept’, it has not yet demonstrated that the techniques developed scale up to much larger data sets. More recent work (Cahill et al., 2002a,b) has presented efforts in evolving and scaling techniques established in these previous papers to the full Penn-II Treebank (Marcus et al., 1994). In this paper, we present a number of quantitative and qualitative evaluation experiments which provide insights into the effectiveness of the techniques developed to automatically derive a set of f-structures for the more than 1,000,000 words and 49,000 sentences of Penn-II. Currently we obtain 94.85% Precision, 95.4% Recall and 95.09% F-Score for preds-only f-structures against a manually encoded gold standard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.