Abstract

Comparative radiography is a forensic identification and shortlisting technique based on the comparison of skeletal structures in ante-mortem and post-mortem images. The images (e.g., 2D radiographs or 3D computed tomographies) are manually superimposed and visually compared by a forensic practitioner. It requires a significant amount of time per comparison, limiting its utility in large comparison scenarios. We propose and validate a novel framework for automating the shortlisting of candidates using artificial intelligence. It is composed of (1) a segmentation method to delimit skeletal structures' silhouettes in radiographs, (2) a superposition method to generate the best simulated "radiographs" from 3D images according to the segmented radiographs, and (3) a decision-making method for shortlisting all candidates ranked according to a similarity metric. The dataset is composed of 180 computed tomographies and 180 radiographs where the frontal sinuses are visible. Frontal sinuses are the skeletal structure analyzed due to their high individualization capability. Firstly, we validate two deep learning-based techniques for segmenting the frontal sinuses in radiographs, obtaining high-quality results. Secondly, we study the framework's shortlisting capability using both automatic segmentations and superimpositions. The obtained superimpositions, based only on the superimposition metric, allowed us to filter out 40% of the possible candidates in a completely automatic manner. Thirdly, we perform a reliability study by comparing 180 radiographs against 180 computed tomographies using manual segmentations. The results allowed us to filter out 73% of the possible candidates. Furthermore, the results are robust to inter- and intra-expert-related errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.