Abstract

ABSTRACT This study focused on using Stipagrostis plumosa for phytoremediation to eliminate total petroleum hydrocarbons (TPHs) and heavy metals (HMs) like cadmium (Cd), chromium (Cr), lead (Pb), and nickel (Ni) from oil-contaminated soil. Conducted over six months at a field-scale without artificial pollutants, soil samples were analyzed using gas chromatography‒mass spectrometry (GC‒MS) for TPHs and inductively coupled plasma-optical emission spectroscopy (ICP‒OES) for HMs. Results after six months revealed that plots with plants had significantly higher average removal percentages for TPHs (61.45%), Cd (39.4%), Cr (46.1%), Pb (41.5%), and Ni (44.2%) compared to the control group (p <0.05). Increased microbial respiration and bacteria populations in planted plots indicated enhanced soil microbial growth. Kinetic rate models aligned well with the first-order kinetic rate model for all pollutants (R2 >0.9). Overall, the study demonstrates that S. plumosa can effectively reduce TPHs and HMs in oil-contaminated soil, making it a promising option for pollutant absorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call