Abstract

Negative air ions (NAI) produce biochemical reactions that increase the levels of the mood chemical serotonin in the environment. Moreover, they benefit both the psychological well being and the human body’s physiological condition. The aim of this research was to estimate and measure the spatial distributions of negative and positive air ions in a residential garden in central Taiwan. Negative and positive air ions were measured at thirty monitoring locations in the study garden from July 2009 to June 2010. Moreover, Kriging was applied to estimate the spatial distribution of negative and positive air ions, as well as the air ion index in the study area. The measurement results showed that the numbers of NAI and PAI differed greatly during the four seasons, the highest and the lowest negative and positive air ion concentrations were found in the summer and winter, respectively. Moreover, temperature was positively affected negative air ions concentration. No matter what temperature is, the ranges of variogram in NAI/PAI were similar during four seasons. It indicated that spatial patterns of NAI/PAI were independent of the seasons and depended on garden elements and configuration, thus the NAP/PAI was a good estimate of the air quality regarding air ions. Kriging maps depicted that the highest negative and positive air ion concentration was next to the waterfall, whereas the lowest air ions areas were next to the exits of the garden. The results reveal that waterscapes are a source of negative and positive air ions, and that plants and green space are a minor source of negative air ions in the study garden. Moreover, temperature and humidity are positively and negatively affected negative air ions concentration, respectively. The proposed monitoring and mapping approach provides a way to effectively assess the patterns of negative and positive air ions in future landscape design projects.

Highlights

  • Studies on negative air ions (NAI) began in the 1970s [1,2]

  • This study has presented an effective approach for integrating air ion monitoring, variograms and Kriging for the efficient evaluation and mapping of the quality of air ions in a residential garden

  • Systematic air ion monitoring during the four seasons is a useful method for generating spatial and temporal NAI and positive air ions (PAI) concentrations in the study area, since NAI and PAI concentration changes induced by the different seasons or a spatial location were recognized by comparing the data from the monitoring sites

Read more

Summary

Introduction

Studies on negative air ions (NAI) began in the 1970s [1,2]. Negative ions in the air were found to act on the parasympathetic nervous system and relax the nerves, whereas positive air ions (PAI) were found to act on and excite the sympathetic nerves [3]. Negative air ions are numerous, reaching several thousands and even tens of thousands per cubic centimeter. In polluted city air, in closed rooms, in moving cars and aircraft, near television sets and computers, the amount of negative air ions falls dramatically to the tens per cubic centimeter [5]. Many cases have demonstrated the beneficial human health effects of negative air ions. Krueger [6] investigated the biochemical mechanisms of the beneficial biological effects of negative air ion inhalation and found it to be useful in decreasing excessive levels of the neurotransmitter serotonin. Nakane et al [8] found that NAI were effective for recovering from the stress caused by computer operation. Positive air ions can cause excessive stress after brief exposure. A state of exhaustion can be observed in the form of a lowered norepinephrine level [9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call