Abstract
Microsystem technologies require relatively strict quality requirements. This is because their functionalities are usually dependent on stringent requirements of dimensions, masses or tolerances. When mass-producing micro-components, e.g. replication of disposable microfluidic diagnostics devices, the consistency of the produced components could be significantly affected by process variability. The variability could be associated with a specific process parameter or could be a result of process noise. This paper presents a methodology to assess and minimise process variability in micro-injection moulding, an example of well-established mass-production techniques for micro-components. A design-of-experiments approach was implemented, where five process parameters were investigated for possible effects on the process variability of two components. The variability was represented by the standard deviation of the replicated part mass. It was found that melt temperature was a significant source of variability in part mass for one of the components, whilst the other was affected by unsystematic variability. Optimisations tools such as response surfaces and desirability functions were implemented to minimise mass variability by more than 40%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.