Abstract
This paper focuses on the relevance of alternate discrete outcome frameworks for modeling driver injury severity. The study empirically compares the ordered response and unordered response models in the context of driver injury severity in traffic crashes. The alternative modeling approaches considered for the comparison exercise include: for the ordered response framework-ordered logit (OL), generalized ordered logit (GOL), mixed generalized ordered logit (MGOL) and for the unordered response framework-multinomial logit (MNL), nested logit (NL), ordered generalized extreme value logit (OGEV) and mixed multinomial logit (MMNL) model. A host of comparison metrics are computed to evaluate the performance of these alternative models. The study provides a comprehensive comparison exercise of the performance of ordered and unordered response models for examining the impact of exogenous factors on driver injury severity. The research also explores the effect of potential underreporting on alternative frameworks by artificially creating an underreported data sample from the driver injury severity sample. The empirical analysis is based on the 2010 General Estimates System (GES) data base—a nationally representative sample of road crashes collected and compiled from about 60 jurisdictions across the United States. The performance of the alternative frameworks are examined in the context of model estimation and validation (at the aggregate and disaggregate level). Further, the performance of the model frameworks in the presence of underreporting is explored, with and without corrections to the estimates. The results from these extensive analyses point toward the emergence of the GOL framework (MGOL) as a strong competitor to the MMNL model in modeling driver injury severity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.