Abstract
ObjectiveClaims data can be leveraged to study rare diseases such as Guillain-Barré Syndrome (GBS), a neurological autoimmune condition. It is difficult to accurately measure and distinguish true cases of disease with claims without a validated algorithm. Our objective was to identify the best-performing algorithm for identifying incident GBS cases in Medicare fee-for-service claims data using chart reviews as the gold standard. Study design and settingThis was a multi-center, single institution cohort study from 2015 to 2019 that used Medicare-linked electronic health record (EHR) data. We identified 211 patients with a GBS diagnosis code in any position of an inpatient or outpatient claim in Medicare that also had a record of GBS in their electronic medical record. We reported the positive predictive value (PPV = number of true GBS cases/total number of GBS cases identified by the algorithm) for each algorithm tested. We also tested algorithms using several prevalence assumptions for false negative GBS cases and calculated a ranked sum for each algorithm's performance. ResultsWe found that 40 patients out of 211 had a true case of GBS. Algorithm 17, a GBS diagnosis in the primary position of an inpatient claim and a diagnostic procedure within 45 days of the inpatient admission date, had the highest PPV (PPV = 81.6%, 95% CI (69.3, 93.9). Across three prevalence assumptions, Algorithm 15, a GBS diagnosis in the primary position of an inpatient claim, was favored (PPV = 79.5%, 95% CI (67.6, 91.5). ConclusionsOur findings demonstrate that patients with incident GBS can be accurately identified in Medicare claims with a chart-validated algorithm. Using large-scale administrative data to study GBS offers significant advantages over case reports and patient repositories with self-reported data, and may be a potential strategy for the study of other rare diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.