Abstract

The Mississippi and Missouri river valleys in the midcontinental United States contain extensive loess-paleosol sequences that are used to constrain the timing of expansion and retreat of the Laurentide Ice Sheet. Previous studies have been unsuccessful in producing finite ages for sediments older than ∼150 ka due to saturation of luminescence emissions. The thermally transferred optically stimulated luminescence (TT-OSL) dating technique is tested on the fine-grained (4–11 μm) quartz fraction of these loess deposits because the TT-OSL signal has been shown to grow with high (kGy) radiation doses. The TT-OSL signal continued to increase with radiation dose above 900 Gy. The optical and thermal stabilities of this TT-OSL signal are evaluated. Equivalent dose values are highly sensitive to preheat temperatures. Recycling ratios, zero-dose response values, and dose recovery tests all yield acceptable values for samples with burial doses >∼200 Gy. The apparent TT-OSL ages for the Roxana Silt (∼52–63 ka), Teneriffe Silt (∼66 ka), and Loveland Silt (∼133–192 ka) agree at 1σ level with previously published TL and IRSL ages derived from the same samples. For the oldest unit, the Crowley's Ridge Silt, TT-OSL ages (∼167–200 ka) are younger than IRSL or TL ages by ∼20%. This is interpreted as underestimation related to TT-OSL signal contamination, which can be avoided by isolating the fast component of the TT-OSL. Preliminary fast component TT-OSL ages for the Crowley's Ridge Silt (∼197–241 ka) favor deposition during marine oxygen-isotope stage (MIS) 7 or 8, contrary to a previous inference of a MIS 12 deposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call