Abstract
Electroencephalography (EEG) is an important tool in the field of developmental cognitive neuroscience for indexing neural activity. However, racial biases persist in EEG research that limit the utility of this tool. One bias comes from the structure of EEG nets/caps that do not facilitate equitable data collection across hair textures and types. Recent efforts have improved EEG net/cap design, but these solutions can be time-intensive, reduce sensor density, and are more difficult to implement in younger populations. The present study focused on testing EEG sensor net designs over infancy. Specifically, we compared EEG data quality and retention between two high-density saline-based EEG sensor net designs from the same company (Magstim EGI, Whitland, UK) within the same infants during a baseline EEG paradigm. We found that within infants, the tall sensor nets resulted in lower impedances during collection, including lower impedances in the key online reference electrode for those with greater hair heights and resulted in a greater number of usable EEG channels and data segments retained during pre-processing. These results suggest that along with other best practices, the modified tall sensor net design is useful for improving data quality and retention in infant participants with curly or tightly-coiled hair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.