Abstract

AbstractWe propose a light detection and ranging (LIDAR)‐based relative navigation scheme that is appropriate for uncooperative relative space navigation applications. Our technique combines the encoding power of the three‐dimensional (3D) local descriptors that are matched exploiting a correspondence grouping scheme, with the robust rigid transformation estimation capability of the proposed adaptive recursive filtering techniques. Trials evaluate several current state‐of‐the‐art 3D local descriptors and recursive filtering techniques on a number of both real and simulated scenarios that involve various space objects including satellites and asteroids. Results demonstrate that the proposed architecture affords a 50% odometry accuracy improvement over current solutions, while also affording a low computational burden. From our trials we conclude that the 3D descriptor histogram of distances short (HoD‐S) combined with the adaptive αβ filtering poses the most appealing combination for the majority of the scenarios evaluated, as it combines high quality odometry with a low processing burden.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.