Abstract

Automatic diagnosing lung cancer from computed tomography scans involves two steps: detect all suspicious lesions (pulmonary nodules) and evaluate the whole-lung/pulmonary malignancy. Currently, there are many studies about the first step, but few about the second step. Since the existence of nodule does not definitely indicate cancer, and the morphology of nodule has a complicated relationship with cancer, the diagnosis of lung cancer demands careful investigations on every suspicious nodule and integration of information of all nodules. We propose a 3-D deep neural network to solve this problem. The model consists of two modules. The first one is a 3-D region proposal network for nodule detection, which outputs all suspicious nodules for a subject. The second one selects the top five nodules based on the detection confidence, evaluates their cancer probabilities, and combines them with a leaky noisy-OR gate to obtain the probability of lung cancer for the subject. The two modules share the same backbone network, a modified U-net. The overfitting caused by the shortage of the training data is alleviated by training the two modules alternately. The proposed model won the first place in the Data Science Bowl 2017 competition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.