Abstract

Goal of this study is to evaluate the effect of shear modulus variation on pavement responses, such as stress-strain, under dynamic load incorporating the AC cross-anisotropy. A dynamic Finite Element Model (FEM) of an instrumented asphalt pavement section on Interstate 40 (I-40) near Albuquerque, New Mexico, is developed in ABAQUS to determine stress-strain under truck tire pressure. Laboratory dynamic modulus tests were conducted on the AC cores to determine the temperature and frequency varying modulus values along both vertical and horizontal directions. The test outcomes are used to produce cross-anisotropic and viscoelastic parameters. Resilient modulus tests are conducted on granular aggregates from base and subbase layer to determine the nonlinear elastic and stress-dependent modulus values. These material parameters are integrated to the FEM through a FORTRAN subroutine via User Defined Material (UMAT) in the ABAQUS. The developed FEM is validated using the pavement deflections and stress-strain data under Falling Weight Deflectometer (FWD) test. The validated dynamic FEM is simulated under the non-uniform vertical tire contact stress. For the parametric study to investigate the effect of shear modulus variation on pavement responses, the validated FEM is simulated by varying the shear modulus in the AC layer. The results show that the variation in shear modulus along a vertical plane barely affects the tensile strain at the bottom of the AC layer and vertical compressive strains in both AC and unbound layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call