Abstract
Austenitic stainless steel (ASS) is the most common type of stainless steel which offers excellent weldability and mechanical properties. ASS is being used for various applications i.e. automotive, oil and gas and chemical industries in which the welding process plays a prominent role. Welding process selection is the main factor that emphasizes mechanical and corrosion resistance properties in various aggressive environments. There are various corrosion occurs in ASS but intergranular corrosion (IGC) forms during welding at elevated temperatures. IGC mainly occurs at grain boundaries of structure and resulting chromium depletion due to precipitation of chromium carbide at the grain boundary. In present work pulsed current gas tungsten arc welding (PCGTAW) process was used to investigate intergranular corrosion by oxalic acid test as per ASTM A262 Practice A. Experiments performed based on Taguchi L9 using design of experiments and corrosion rates are evaluated at base metal, heat affected zone and weld zone. This work is aimed to optimize process parameters followed by regression analysis to IGC susceptibility in the weldment. In this investigation, it has been found from ANOVA and main effects plots that peak current and base current are the most significant parameters in the PCGTAW process. The results of the corrosion test revealed that heat affected zone is more susceptible to IGC. At the end, it has been observed that the optimum value of peak current, base current and frequency based on regression analysis are 100 A, 50 A and 6 Hz respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.