Abstract
In this paper, the performance of a variety of different methods of dimensionality reduction on finger vein database is evaluated to determine the most appropriate one in terms of finger vein recognition. Principal Component Analysis using K-nearest neighbor (KNN) as a classifier, different types of Kernel Principal Component Analysis (KPCA) using KNN as a classifier, different types of Kernel Entropy Component Analysis (KECA) using KNN as a classifier, and finally different types of KPCA using Local mean-based k-nearest centroid neighbor (LMKNCN) as a classifier are implemented on finger vein database. Different types of KPCA and KECA used in this experiment are Linear, Polynomial, and Gaussian. Extensive comparisons are made in this paper to identify which method matches finger vein recognition best.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.