Abstract
The incremental dynamic analysis is a powerful tool for evaluating the seismic vulnerability and risk of buildings. It allows calculating the global damage of structures for different peak ground accelerations, PGA, and representing this result by means of damage curves. Such curves are currently used to obtain seismic risk scenarios at urban level. Even if the application of this method in a probabilistic environment requires a relevant computational effort, this has to be the reference method for determining those curves. Nevertheless, it would be of high practical interest to have a simpler method based, for instance, on pushover analysis, for assessing the seismic vulnerability and risk of buildings, which allows obtaining results similar to those based on the incremental dynamic analysis. Referring to the capacity-spectrum-based-methods, expert opinions have been used in previous researches for defining damage states thresholds starting from the yielding and the ultimate spectral displacement identified in the bilinear capacity spectrum. Therefore, we propose in this article a new procedure for defining the damage states thresholds, based on the stiffness degradation of reinforced concrete building, and a fully probabilistic approach is tackled by means of Monte Carlo simulations. It is demonstrated in the paper that the obtained results are in good agreement with those calculated using the incremental dynamic analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.