Abstract

Rare kaon decays with missing energy, K → π+Emiss, have received considerable attention because their rates can be calculated quite precisely within the standard model (SM), where the missing energy is carried away by an undetected neutrino- antineutrino pair. Beyond the SM, clean theoretical predictions can also be made regarding these processes. One such prediction is the so-called Grossman-Nir (GN) bound, which states that the branching fractions of the KL and K+ modes must satisfy the relation mathrm{mathcal{B}}left({K}_Lto {pi}^0+{E}_{mathrm{miss}}right)underset{sim }{<}4.3mathrm{mathcal{B}}left({K}^{+}to {pi}^{+}+{E}_{mathrm{miss}}right) and applies within and beyond the SM, as long as the hadronic transitions change isospin by ∆I = 1/2. In this paper we extend the study of these modes to include new-physics scenarios where the missing energy is due to unobserved lepton-number-violating neutrino pairs, invisible light new scalars, or pairs of such scalars. The new interactions are assumed to arise above the electroweak scale and described by an effective field theory. We explore the possibility of violating the GN bound through ∆I = 3/2 contributions to the K → π transitions within these scenarios and find that large violations are only possible in the case where the missing energy is due to an invisible light new scalar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.