Abstract
Capturing the impact of uncertain events in emergency evacuation time estimation is an important issue for public officials to avoid unexpected delays and related losses of life and property. However, most of the current studies in evacuation planning only focus on exogenous uncertainties, such as flooding damage in a hurricane, but ignore uncertainties caused by endogenously determined risks, or so called flow-related risks. This paper proposes an analytical framework along with an efficient solution methodology to evaluate the impact of endogenously determined risks in order to estimate evacuation time. We incorporate the probability function of endogenously determined risks in a cell-based macroscopic evacuation model. A network flow algorithm based on the sample average approximation approach is used as part of the solution procedure. Finally, a sample network is used to demonstrate the salient features of the proposed stochastic model and solution procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.