Abstract

A robust eutrophication and sediment diagenesis model has been developed for the Patuxent Estuary to study the impact of different nutrient loadings on phytoplankton biomass and dissolved oxygen (DO) levels. The modeling approach was to begin with an existing water quality model (CE-QUAL-W2) for the Patuxent Estuary (hereafter referred to as the Estuary). First, formulations for the water column kinetics were completely replaced with routines based on the WASP/EUTRO5 water quality model. Then, a sediment diagenesis component was added to simulate the accumulation and mineralization of organic matter in the sediment, the generation of sediment oxygen demand, and the flux of phosphate and ammonia from the sediment. Loadings from the tributaries for nutrients and flow were based on a combination of watershed modeling and sampling by scientists at the Smithsonian Environmental Research Center. The new model was able to reproduce the ambient water quality data from 1997 to 1999 by adequately simulating the high concentrations of phytoplankton and low DO levels in the Estuary. The model was then used to evaluate the response to various hypothetical nutrient loading scenarios. Model results show that phytoplankton growth in the upper Estuary is much more sensitive to nutrient loading from tributaries than in the lower estuary. Further, model results indicate that DO concentrations in the lower Estuary are largely influenced by levels of nutrients and organic carbon at the mouth of the Estuary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.