Abstract

Cyanobacterial blooms have been increasing in frequency and intensity but are often considered an issue restricted to temperate and tropical lakes. Here we report on one of the first occurrences of recurring cyanobacterial (Planktothrix spp.) blooms in a sub-Arctic lake from Yellowknife (Northwest Territories, Canada) and provide a long-term environmental context for the recent blooms using local meteorological data and multi-proxy paleolimnological analyses. Multiple co-occurring regional (gold mining emissions and climatic change) and local (land clearance and urbanization) stressors have impacted Jackfish Lake during the 20th and early-21st centuries, which have led to biological responses across multiple trophic levels. The unprecedented post-2013 cyanobacterial blooms were likely a cumulative response to nutrient enrichment and complex climate-mediated changes to lake thermal properties. A regional analysis of eight lakes around Yellowknife revealed that reduced ice cover duration and longer growing seasons have led to an increase in whole-lake primary production, whilst urban lakes were also fertilized by nutrients from local land-use changes in their catchments. Our findings suggest that anthropogenically nutrient-enriched sub-Arctic lakes, akin to their lower-latitude counterparts, may be vulnerable to cyanobacterial blooms in a warming world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call