Abstract

The larval central nervous system (CNS) of the ascidian Ciona intestinalis (L., 1767) arises from an embryonic neural plate and contains sufficiently few cells, about 330, to enable definitive counts. On the basis of such counts, there is evidence both for cell constancy (eutely) in the larval CNS and for small variations in the overall numbers of cells and among defined cell types within this total. However, evidence for the range of such deviations and the existence of a true phenotypic wild type are lacking. The record of cell lineage, i.e., the mitotic ancestry of each cell, and the fates of some of these cells have recently received increased documentation in both the genus Ciona and Halocynthia roretzi (von Drasche, 1884). Relatively few generations of cells, between 10 and 14, form the entire CNS in C. intestinalis, and cell death does not occur prior to larval hatching. The tiny complement of larval CNS cells can therefore be seen as the product of a small fixed number of determinate cleavages, and variations in cell number as the product of minor deviations in this mitotic ancestry. Within these lineage records, some cell fates have already been identified, but knowledge of most is lacking because the cells lack markers or other identifying features. Nevertheless, this tiny nervous system offers the prospect that all its cells can one day be identified, and their developmental histories and larval functions analyzed, cell by cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call