Abstract

Eutectic solidification in near-eutectic Al-13 wt pet Si casting alloys and the effect of trace addition of boron or strontium on it have been investigated using thermal analysis and microstructural characterization. In unmodified alloy, dual eutectic structure has been observed. The coarse eutectic (dendrite-like AI+ coarse Si flakes) is formed above the equilibrium temperature of eutectic (Al+Si) reaction (577°C). The coarse eutectic (CE) grains nucleate from the primary silicon particles formed earlier due to local enrichment of silicon solute and grow in a divorced mode between the dendritic AI phase and large silicon flakes. The fine eutectic (FE) grains nucleate later on other potential sites activated by melt undercooling and grow in coupled-growing mode with the silicon crystals as fine flakes. The formation of the FE grains is favored in the alloys containing boron because of a great number of potential nucleation sites being added from boron-containing particles. Addition of strontium to the alloys restrains completely the formation of primary silicon particles and hence limits the nucleation of the CE. This is because the eutectic point has moved far enough to make the alloy, at this composition (AI-13 wt pet Si), hypo-eutectic. Local cooling rate during solidification has an important influence on competition formation of these two eutectics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.