Abstract
Low- and ultra-low-grade thermal energy have significant recycling value for energy saving and carbon footprint reduction. Efficient thermal energy storage technology based on phase change materials (PCMs) will help improve heat recovery. This study aimed to develop a composite eutectic fatty acid of lauric acid (LA) and stearic acid (SA) binary system with expanded graphite (EG). The experimental measured eutectic temperature was 31.2 °C with an LA-to-SA mass ratio of 7:3. Afterwards, 1~15 wt.% EG was composited to the eutectic acid, and the thermophysical properties of the composite PCMs were measured by differential scanning calorimetry (DSC) and transient plane source (TPS) methods. The results demonstrated that the phase transition temperature and latent heat of the composite PCMs were stable when the content of EG was more than 5%, and the thermal conductivity and thermal diffusion coefficient of the composite PCMs (10–15 wt.%) increased by 2.4–2.6 and 3.2–3.7 times compared with the pure eutectic acid, respectively. On this basis, a finned-coil-type reservoir was prepared, and an experimental study of heat storage and heat release performance was carried out. The results showed that the heat storage and heat release effects of the heat reservoir were the best when the EG ratio was 10 wt.%. The heat storage time was reduced by 20.4%, 8.1%, and 6.2% compared with the other three EG ratios, respectively; meanwhile, the heat release time was reduced by 19.3%, 6.7%, and 5.3%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.