Abstract

ABSTRACTWe present a process for creating in-plane anisotropic strain in (100) GaAs and GaAs/AlGaAs multiple quantum well (MQW) thin films. The host substrates used for bonding include (100) GaAs, (100) silicon, and lithium tantalate (LiTaO3) with a special crystalline orientation. A mutilayer metallization consisting of Au-Sn (Au: 80 wt% , Sn: 20 wt%, 0.95μm), Ti (500Å) adhesion layer and Pt (500Å) barrier layer is deposited on the thin films and the host substrates. By choosing a proper annealing temperature (380°C) and thickness of eutectic layer, the thin films and the substrates are bonded together. Photoluminescence measurements do not reveal any thermally induced strain in the thin films bonded to GaAs; however, they show the existence of in-plane biaxial strain in the films bonded on Si. Linearly polarized reflectance measurements reveal an optical anisotropy in the MQW bonded to LiTaO3, which possesses an orientation-dependent thermal expansion. This indicates that the in-plane strain in the thin films is induced by the different thermal expansions between the thin films and the substrates. This process can be used to develop a new class of devices with an artificially induced in-plane strain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call