Abstract
Easy synthesis of efficient, non-toxic photocatalysts is a target to expand their potential applications. In this research, the role of Eu3+ doping in the non-toxic, affordable, and easily prepared MgAl hydrotalcite-like compounds (HTlcs) was explored in order to prepare visible light semiconductors. Eu doped MgAl-HTlcs (MA-xEu) samples were prepared using a simple coprecipitation method (water, room temperature and atmospheric pressure) and europium was successfully incorporated into MgAl HTlc frameworks at various concentrations, with x (Eu3+/M3+ percentage) ranging from 2 to 15. Due to the higher ionic radius and lower polarizability of Eu3+ cation, its presence in the metal hydroxide layer induces slight structural distortions, which eventually affect the growth of the particles. The specific surface area also increases with the Eu content. Moreover, the presence of Eu3+ 4f energy levels in the electronic structure enables the absorption of visible light in the doped MA-xEu samples and contributes to efficient electron-hole separation. The microstructural and electronic changes induced by the insertion of Eu enable the preparation of visible light MgAl-based HTlcs photocatalysts for air purification purposes. Specifically, the optimal HTlc photocatalyst showed improved NOx removal efficiency, ∼ 51% (UV–Vis) and 39% (visible light irradiation, 420 nm), with excellent selectivity (> 96 %), stability (> 7 h), and enhanced release of •O2− radicals. Such results demonstrate a simple way to design photocatalytic HTlcs suitable for air purification technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.