Abstract

Although much research has gone into the design of nanomaterials, inflammatory response still impedes the capacity of nanomaterial-induced tissue regeneration. In-situ incorporation of nutrient elements in silica-based biomaterials has emerged as a new option to endow the nanomaterials modulating biological reactions. In this work, europium-doped mesoporous silica nanospheres (Eu-MSNs) were successfully synthesized via a one-pot method. The nanospheres (size of 280-300nm) possess uniformly spherical morphology and mesoporous structure, and well distributed Eu elements. The nanospheres show distinct fluorescent property at 615nm for potential bio-labeling. Noticeably, the Eu-MSNs stimulate pro-inflammatory response of macrophages and induce a modulated immune microenvironment, which further activates the osteogenic differentiation of bone marrow stromal cells (BMSCs) as well as angiogenic activity of human umbilical vein endothelial cells (HUVECs). During the process, osteogenesis-related genes (e.g. ALP, OCN, OPN and COL-I) of BMSCs, and angiogenesis-related genes (e.g. CD31, MMP9, VEGFR1/2, and PDGFRα/β) of HUVECs were significantly upregulated by Eu-MSNs modulating immune environment of macrophages. The invivo study further demonstrated that the Eu-MSNs could not only stimulate osteogenesis by accelerating the new bone formation at critical-sized cranial defect site, but also support the blood vessel formation as well as collagen deposition and re-epithelialization at chronic skin wound sites, showing an improved angiogenesis activity when comparing with MSNs alone. Given the easy handling characteristics and extensive application potential, the results suggest that Eu-MSNs could be used as immunity-modulated osteogenesis/angiogenesis agent for skin and bone regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.