Abstract

Relatively few studies have extensively analysed the genetic diversity of the runner bean through molecular markers. Here, we used six chloroplast microsatellites (cpSSRs) to investigate the cytoplasmic diversity of 331 European domesticated accessions of the scarlet runner bean (Phaseolus coccineus L.), including the botanical varieties albiflorus, bicolor and coccineus, and a sample of 49 domesticated and wild accessions from Mesoamerica. We further explored the pattern of diversity of the European landraces using 12 phenotypic traits on 262 individuals. For 158 European accessions, we studied the relationships between cpSSR polymorphisms and phenotypic traits. Additionally, to gain insights into the role of gene flow and migration, for a subset of 115 accessions, we compared and contrasted the results obtained by cpSSRs and phenotypic traits with those obtained in a previous study with 12 nuclear microsatellites (nuSSRs). Our results suggest that both demographic and selective factors have roles in the shaping of the population genetic structure of the European runner bean. In particular, we infer the existence of a moderate-to-strong cytoplasmic bottleneck that followed the expansion of the crop into Europe, and we deduce multiple domestication events for this species. We also observe an adaptive population differentiation in the phenology across a latitudinal gradient, which suggests that selection led to the diversification of the runner bean in Europe. The botanical varieties albiflorus, bicolor and coccineus, which are based solely on flower colour, cannot be distinguished based on these cpSSRs and nuSSRs, nor according to the 12 quantitative traits.

Highlights

  • The scarlet runner bean (Phaseolus coccineus L., 2n = 2x = 22) is the third-most important Phaseolus species worldwide, after P. vulgaris and P. lunatus [1]

  • In America, the wild gene pool diversity was higher than the domesticated gene pool diversity for allelic richness, gene diversity and haplotype diversity (Table 4)

  • Within the domesticated gene pool, there was a total of 22 alleles (American and European)

Read more

Summary

Introduction

Phaseolus coccineus is a perennial species that can live up to 10 years, outside Central America and Mexico it is usually cultivated as an annual, as it cannot survive frost [2,3]. Phaseolus coccineus is native to Mexico, Guatemala and Honduras [4], and the wild forms are probably not all ancestral to the cultivated form. Angioi et al [7] analysed a small set of P. coccineus accessions (wild and domesticated) using chloroplast microsatellites (cpSSRs), and they proposed two different wild genetic groups. This division paralleled the differentiation between two groups of the domesticated accessions, which suggested multiple domestication events of P. coccineus in Mesoamerica [7]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.