Abstract

Viral haemorrhagic septicaemia (VHS), caused by the novirhabdovirus VHSV, often leads to significant economic losses to European rainbow trout production. The virus isolates are divided into 4 distinct genotypes with additional subgroups including sublineage Ia, isolates of which are the main source of outbreaks in European rainbow trout farming. A significant portion of Danish rainbow trout farms have been considered endemically infected with VHSV since the first disease outbreak was observed in the 1950s. However, following a series of sanitary programs starting in 1965, VHSV has not been detected in Denmark since January 2009. Full-length G-genes of all Danish VHSV isolates that were submitted for diagnostic analyses in the period 2004-2009 were sequenced and analysed. All 58 Danish isolates from rainbow trout grouped with sublineage Ia isolates. Furthermore, VHSV isolates from infected Danish freshwater catchments appear to have evolved into a distinct clade within sublineage Ia, herein designated clade Ia-1, whereas trout isolates originating from other continental European countries cluster in another distinct clade, designated clade Ia-2. In addition, phylogenetic analyses indicate that VHSV Ia-1 strains have caused a few outbreaks in Germany and the UK. It is likely that viruses have been transmitted from infected site(s) out of the Danish environment, although a direct transmission pathway has not been identified. Furthermore, VHSV Ia-2 isolates seem to have been transmitted to Denmark at least once. Interestingly, one viral isolate possibly persisted in a Danish watershed for nearly 4 yr without detection whereas other subclades of VHSV isolates appear to have been eliminated, probably because of implemented eradication procedures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call