Abstract

Abstract. Europe's offshore wind resource mapping is part of the New European Wind Atlas (NEWA) international consortium effort. This study presents the results of analysis of synthetic aperture radar (SAR) ocean wind maps based on Envisat and Sentinel-1 with a brief description of the wind retrieval process and Advanced Scatterometer (ASCAT) ocean wind maps. The wind statistics at 10 and 100 m above mean sea level (a.m.s.l.) height using an extrapolation procedure involving simulated long-term stability over oceans are presented for both SAR and ASCAT. Furthermore, the Weather Research and Forecasting (WRF) offshore wind atlas of NEWA is presented. This has 3 km grid spacing with data every 30 min for 30 years from 1989 to 2018, while ASCAT has 12.5 km and SAR has 2 km grid spacing. Offshore mean wind speed maps at 100 m a.m.s.l. height from ASCAT, SAR, WRF and ERA5 at a European scale are compared. A case study on offshore winds near Crete compares SAR and WRF for flow from the north, west and all directions. The paper highlights the ability of the WRF model to simulate the overall European wind climatology and the near-coastal winds constrained by the resolution of the coastal topography in the WRF model simulations.

Highlights

  • The extraction of energy from wind is part of the clean energy transition

  • This study presents the results of analysis of synthetic aperture radar (SAR) ocean wind maps based on Envisat and Sentinel-1 with a brief description of the wind retrieval process and Advanced Scatterometer (ASCAT) ocean wind maps

  • The overall objective of the study is to present the new European Offshore Wind Atlas and to examine the similarities and differences of wind maps based on ASCAT, SAR and the Weather Research and Forecasting (WRF) model

Read more

Summary

Introduction

The extraction of energy from wind is part of the clean energy transition. It supports society to reach the objectives of the Paris Climate Change agreement and the Sustainable Development Goals. Wind energy in Europe provided 14 % of total electricity consumption in 2018. This share will increase in coming years. By the end of 2018, the installed offshore capacity reached 18.5 GW, which is approximately 10 % of Europe’s total wind energy capacity (Wind Europe, 2019). Offshore wind resource assessment based on in situ meteorological wind observations in the Baltic and North seas (see review in Sempreviva et al, 2008), Italy (Casale et al, 2010), and Malta (Farrugia and Sant, 2016) provides local information. The meteorological observations are useful for comparison to model results to select suitable atmospheric model setup and to assess the model performance (Jimenez et al, 2006; Berge et al, 2009; Hahmann et al, 2015)

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.