Abstract

The bacterial reverse mutation test (Ames test) is the most commonly used genotoxicity test; it is a primary component of the chemical safety assessment data required by regulatory agencies worldwide. Within the current accepted in vitro genotoxicity test battery, it is considered capable of revealing DNA reactivity, and identifying substances that can produce gene mutations via different mechanisms. The previously published consolidated EURL ECVAM Genotoxicity and Carcinogenicity Database, which includes substances that elicited a positive response in the Ames test, constitutes a collection of data that serves as a reference for a number of regulatory activities in the area of genotoxicity testing. Consequently, we considered it important to expand the database to include substances that fail to elicit a positive response in the Ames test, i.e., Ames negative substances. Here, we describe a curated collection of 211 Ames negative substances, with a summary of complementary data available for other genotoxicity endpoints in vitro and in vivo, plus available carcinogenicity data. A descriptive analysis of the data is presented. This includes a representation of the chemical space formed by the Ames-negative database with respect to other substances (e.g. REACH registered substances, approved drugs, pesticides, etc.) and a description of the organic functional groups found in the database. We also provide some suggestions on further analyses that could be made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.