Abstract
The Micius satellite is the pioneering initiative to demonstrate quantum teleportation, entanglement distribution, quantum key distribution (QKD), and quantum-secured communications experiments at the global scale. In this work, we report on the results of the 600-mm-aperture ground station design which has enabled the establishment of a quantum-secured link between the Zvenigorod and Nanshan ground stations using the Micius satellite. As a result of a quantum communications session, an overall sifted key of 2.5 Mbits and a total final key length of 310 kbits have been obtained. We present an extension of the security analysis of the realization of satellite-based QKD decoy-state protocol by taking into account the effect of the detection-efficiency mismatch for four detectors. We also simulate the QKD protocol for the satellite passage and by that validate our semi-empirical model for a realistic receiver, which is in good agreement with the experimental data. Our results pave the way to the considerations of realistic imperfection of the QKD systems, which are important in the context of their practical security.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.