Abstract

Medical images are crucial in clinical practice, providing essential information for patient assessment and treatment planning. However, manual extraction of information from images is both time-consuming and prone to errors. The emergence of U-Net addresses this challenge by automating the segmentation of anatomical structures and pathological lesions in medical images, thereby significantly enhancing the accuracy of image interpretation and diagnosis. However, the performance of U-Net largely depends on its encoder–decoder structure, which requires researchers with knowledge of neural network architecture design and an in-depth understanding of medical images. In this paper, we propose an automatic U-Net Neural Architecture Search (NAS) algorithm using the differential evolutionary (DE) algorithm, named EU-Net, to segment critical information in medical images to assist physicians in diagnosis. Specifically, by presenting the variable-length strategy, the proposed EU-Net algorithm can sufficiently and automatically search for the neural network architecture without expertise. Moreover, the utilization of crossover, mutation, and selection strategies of DE takes account of the trade-off between exploration and exploitation in the search space. Finally, in the encoding and decoding phases of the proposed algorithm, different block-based and layer-based structures are introduced for architectural optimization. The proposed EU-Net algorithm is validated on two widely used medical datasets, i.e., CHAOS and BUSI, for image segmentation tasks. Extensive experimental results show that the proposed EU-Net algorithm outperforms the chosen peer competitors in both two datasets. In particular, compared to the original U-Net, our proposed method improves the metric mIou by at least 6%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call