Abstract

ABSTRACTEumelanins, the black insoluble pigments of human skin, eyes and substantia nigra (neuromelanin), stand today as a unique source of inspiration for the design and implementation of soft biocompatible multifunctional materials for bio-optoelectronic devices. Interest in eumelanins stems from bioavailability, biocompatibility and a peculiar set of physicochemical properties, i.e. broadband absorption in the UV-visible range, intrinsic free radical character, water-dependent hybrid ionic–electronic conductor behaviour, supporting optimistic feelings about a possible rise of eumelanin-mimics as innovative bioinspired solutions for organic bioelectronics.However, a number of conceptual and technological gaps still hinder a rapid progress of melanin-based organic electronics and bioelectronics, including in particular the limited contribution of electronic conductivity and current decay with time under biasing. Herein, we provide a concise overview of the structural and optoelectronic properties of melanins with a view to bringing to focus main issues and challenges en route to bioelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.