Abstract
In 1691, James (Jacob) Bernoulli proposed a problem called elastica problem: What shape of elastica, an ideal thin elastic rod on a plane, is allowed? Daniel Bernoulli discovered its energy functional, Euler-Bernoulli energy function, and the minimal principle of the elastica. Using it, Euler essentially solved the problem in 1744 by developing the variational method, elliptic integral theory and so on. This article starts with a review of its mathematical meaning and historical background. After that we present one of its extensions, statistical mechanics of elastica as a model of the DNA and the large polymers. We will call it a quantized elastica, and show that it is connected with the modified Korteweg-de Vries hierarchy, loop space, submanifold Dirac operators, moduli spaces of the real hyperelliptic curves and so on. By reviewing the other extensions of the elastica problem, we will see that elastica is in the center of mathematics even now.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.