Abstract
The present study is related to the particle behaviour and the pressure drop in a particle-laden six meter long horizontal channel with rectangular cross-section from both experimental and numerical perspectives. Experiments and calculations are carried out for different spherical glass beads with diameters between 60 and 625 μm and mass loadings up to 1.0 (kg particles/kg gas). Additionally, stainless steel walls with different wall roughness are considered. In all experiments the air volume flow rate is constant in order to maintain a fixed gas average velocity of 20 m/s. As a result, the pressure drop in the channel is strongly influenced by wall roughness. Higher wall roughness implies higher pressure drop because of the increase in wall collision frequency, whereby momentum is extracted from the fluid due to two-way coupling. The numerical computations were performed by the Euler/Lagrange approach accounting for two-way and four-way coupling. For the calculation of the particle motion all relevant forces (i.e. drag, transverse lift and gravity), inter-particle collisions and wall collisions with wall roughness were considered. The agreement of the computations with the experiments was found to be very good for the gas and particle velocities as well as the pressure drop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.