Abstract

AbstractThe Eulerian volume transport in internal equatorial Kelvin waves subject to viscous attenuation is investigated theoretically by integrating the horizontal momentum equations in the vertical. In terms of small perturbations, the time-averaged horizontal transports are determined to second order in wave steepness. The total Lagrangian volume transport in this problem consists of a Stokes transport plus an Eulerian transport. It is known that the Stokes transport, that is, the vertically integrated Stokes drift, in inviscid internal equatorial Kelvin waves vanishes identically in the rigid-lid approximation for arbitrary vertical variation of the Brunt–Väisälä frequency. The present study considers spatial wave damping due to viscosity. The Stokes transport still becomes zero, but now the radiation stresses due to decaying waves become source terms for the Eulerian mean transport. Calculations of the wave-induced Eulerian transport yield a jetlike symmetric mean flow along the equator from west to east for each baroclinic component, with compensating westward flows on both sides. The flow system scales as the internal equatorial Rossby radius in the north–south direction. The total eastward part of the Eulerian volume flux centered about the equator is estimated to about 0.2 Sv (1 Sv ≡ 106 m3 s−1) for the first baroclinic mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.