Abstract

This paper reports a study of steady-state heat transfer of gas and liquid flowing through a packed bed with spherical particles of 2.06mm and constant wall temperature with Computational Fluid Dynamics (CFDs). The effect of gas and liquid flow rates on heat transfer in packed beds are discussed. The effective radial bed conductivity (λer) is calculated based on the steady-state two dimensional model. The results of the CFD simulations have been validated with experiments and they are in a good agreement. For most of the cases the results of the CFD simulations deviate from the experimental results not more than 10%. The results show that the effective radial bed conductivity increases with increase of the velocity of gas and liquid. In trickle flow regime the effective radial bed conductivity is much bigger than in a dry gas flow regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.