Abstract
The aim of this paper is to generalize the well-known “Eulerian numbers”, defined by the recursion relationE(n, k) = (k + 1)E(n − 1, k) + (n − k)E(n − 1, k − 1), to the case thatn ∈ ℕ is replaced by α ∈ ℝ. It is shown that these “Eulerian functions”E(α, k), which can also be defined in terms of a generating function, can be represented as a certain sum, as a determinant, or as a fractional Weyl integral. TheE(α, k) satisfy recursion formulae, they are monotone ink and, as functions of α, are arbitrarily often differentiable. Further, connections with the fractional Stirling numbers of second kind, theS(α, k), α > 0, introduced by the authors (1989), are discussed. Finally, a certain counterpart of the famous Worpitzky formula is given; it is essentially an approximation ofx α in terms of a sum involving theE(α, k) and a hypergeometric function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.