Abstract

A numerical investigation of aeolian sand transport is performed with an Eulerian–Lagrangian model. In this model, the gas phase is described by the volume-averaged Navier-Stokes equations of two-phase flow. The particle motion is obtained by solving Newton's second law of motion taking into account the inter-particle collisions, where a soft sphere model is used to describe inter-particle collisions. The dynamic process of aeolian sand transport is simulated. The simulation results show that the variation of mean horizontal velocity of the particles with height can be expressed by a logarithmical function or a power function at h > 0.02 m, and the power function can be described below 0.02 m. The sand mass flux decreases exponentially with height for h > 0.02 m, but there is a deviation from the exponential decay due to the creep grains in the near-bed region. It is also shown that the inter-particle collisions play an important role in sand saltation. Therefore the present numerical model is capable of being applied to the study of windblown sand movement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.