Abstract

We investigate the structure of a simple class of affine toric Calabi-Yau varieties that are defined from quiver representations based on finite eulerian directed graphs (digraphs). The vanishing first Chern class of these varieties just follows from the characterisation of eulerian digraphs as being connected with all vertices balanced. Some structure theory is used to show how any eulerian digraph can begenerated by iterating combinations of just a few canonical graph-theoretic moves. We describe the effect of each of these moves on the lattice polytopes which encode the toric Calabi-Yau varieties and illustrate the construction in several examples. We comment on physical applications of the construction in the context of moduli spaces for superconformal gauged linear sigma models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.