Abstract
The objective of this study is the modeling of the atomization and dispersion of an irrigation water jet, from the nozzle outlet to the region of full development of the spray. The use of an Eulerian model, developed for high Reynolds and Weber numbers fluid flow, provides a continuous description of the process. In this model, the conservation equations are written for a two phase mixture. A transport equation for the volume density of the interface represents fragmentation/coalescence mechanisms and gives mean liquid fragments size. The numerical results obtained by this model were compared to experimental measurements of mean velocity, turbulent kinetic energy, liquid volume fraction and Sauter Mean Diameter. The model overestimates the decrease of the longitudinal velocity on the axis, but successfully predicts the volume fraction and mean droplet size profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.